“We are living in a universe uncalculable by science.”

I find the relationship and interplay between science and philosophy fascinating.
Galactic Center
(NASA / ESAPublic Domain)

Fascinating article by physicist Alan P. Lightman on the philosophical ramifications of multiverse theory (i.e., the theory that there are a potentially infinite number of universes in existence):

It is perhaps impossible to say how far apart the different universes may be, or whether they exist simultaneously in time. Some may have stars and galaxies like ours. Some may not. Some may be finite in size. Some may be infinite. Physicists call the totality of universes the “multiverse.” Alan Guth, a pioneer in cosmological thought, says that “the multiple-universe idea severely limits our hopes to understand the world from fundamental principles.” And the philosophical ethos of science is torn from its roots. As put to me recently by Nobel Prize-winning physicist Steven Weinberg, a man as careful in his words as in his mathematical calculations, “We now find ourselves at a historic fork in the road we travel to understand the laws of nature. If the multiverse idea is correct, the style of fundamental physics will be radically changed.“

The scientists most distressed by Weinberg’s “fork in the road” are theoretical physicists. Theoretical physics is the deepest and purest branch of science. It is the outpost of science closest to philosophy, and religion. Experimental scientists occupy themselves with observing and measuring the cosmos, finding out what stuff exists, no matter how strange that stuff may be. Theoretical physicists, on the other hand, are not satisfied with observing the universe. They want to know why. They want to explain all the properties of the universe in terms of a few fundamental principles and parameters. These fundamental principles, in turn, lead to the “laws of nature,” which govern the behavior of all matter and energy. An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. An example of a fundamental parameter is the mass of an electron, considered one of the two dozen or so “elementary” particles of nature. As far as physicists are concerned, the fewer the fundamental principles and parameters, the better. The underlying hope and belief of this enterprise has always been that these basic principles are so restrictive that only one, self-consistent universe is possible, like a crossword puzzle with only one solution. That one universe would be, of course, the universe we live in. Theoretical physicists are Platonists. Until the past few years, they agreed that the entire universe, the one universe, is generated from a few mathematical truths and principles of symmetry, perhaps throwing in a handful of parameters like the mass of the electron. It seemed that we were closing in on a vision of our universe in which everything could be calculated, predicted, and understood.

However, two theories in physics, eternal inflation and string theory, now suggest that the same fundamental principles from which the laws of nature derive may lead to many different self-consistent universes, with many different properties. It is as if you walked into a shoe store, had your feet measured, and found that a size 5 would fit you, a size 8 would also fit, and a size 12 would fit equally well. Such wishy-washy results make theoretical physicists extremely unhappy. Evidently, the fundamental laws of nature do not pin down a single and unique universe. According to the current thinking of many physicists, we are living in one of a vast number of universes. We are living in an accidental universe. We are living in a universe uncalculable by science.

[…]

If the multiverse idea is correct, then the historic mission of physics to explain all the properties of our universe in terms of fundamental principles — to explain why the properties of our universe must necessarily be what they are — is futile, a beautiful philosophical dream that simply isn’t true.

I find articles like this fascinating — not because I’m anti-science or because I enjoy the notion of science getting its comeuppance — but rather, because I find the relationship and interplay between science and philosophy fascinating.

Enjoy reading Opus? Want to support my writing? Become a subscriber for just $5/month or $50/year.
Subscribe Today
Return to the Opus homepage